

Advances in triggering and data acquisition

Jennifer Ngadiuba (Caltech)

Snowmass Community Planning Meeting Collider Data Analysis Strategies October 6th, 2020

The trigger system @ LHC

- Experiments at colliders must deal with extreme data rates of O(100) Tb/s
- We must reduce these to manageable levels for offline processing and storage by filtering collision events → triggering

Trigger challenges @ HL-LHC

- Untriggered events are lost forever → need very fast and very accurate algorithms
- With higher rates, more pileup, more readout channels event data to become more complex at HL-LHC
- A challenge to mantain physics
 - → need more sophisticated triggers and DAQ systems

LHC today

40 pp collisions per bunch crossing

HL-LHC

200 pp collisions per bunch crossing + more granular detectors

Advances & opportunities

Hardware trigger:

- port offline-like algorithms to FPGAs [ex, tracking and particle flow]
- deploy deep learning, highly parallelizable inference on FPGAs
- take advantge of new industry tools for compiling more common C/C++ code to hardware language [ex, hls4ml for low latency DL inference]

Advances & opportunities

Software trigger:

- heterogenous computing systems to increase throughput at flat cost [*]
- with GPUs in place deep learning inference could be made very fast (and faster than the standard physics-inspired reconstruction algorithm)

[*] Example for CMS:

today offloading 24% of the online reconstruction to GPUs (pixel tracking, calorimeter reconstruction)

Advances & opportunities

Software trigger:

- heterogenous computing systems to increase throughput at flat cost
- with GPUs in place deep learning inference could be made very fast (and faster than the standard physics-inspired reconstruction algorithm)
- CPU+FPGA system and more exotic processors also being explored with promising results for DL [*]

